Regional and sub-regional differences in hippocampal GABAergic neuronal vulnerability in the TgCRND8 mouse model of Alzheimer's disease
نویسندگان
چکیده
Hippocampal network activity is predominantly coordinated by γ-amino-butyric acid (GABA)ergic neurons. We have previously hypothesized that the altered excitability of hippocampal neurons in Alzheimer's disease (AD), which manifests as increased in vivo susceptibility to seizures in the TgCRND8 mouse model of AD, may be related to disruption of hippocampal GABAergic neurons. In agreement, our previous study in TgCRND8 mice has shown that hippocampal GABAergic neurons are more vulnerable to AD-related neuropathology than other types of neurons. To further explore the mechanisms behind the observed decrease of GABAergic neurons in 6 month-old TgCRND8 mice, we assessed the relative proportion of somatostatin (SOM), neuropeptide Y (NPY) and paravalbumin (PV) sub-types of GABAergic neurons at the regional and sub-regional level of the hippocampus. We found that NPY expressing GABAergic neurons were the most affected, as they were decreased in CA1-CA2 (pyramidal-, stratum oriens, stratum radiatum and molecular layers), CA3 (specifically in the stratum oriens) and dentate gyrus (specifically in the polymorphic layer) in TgCRND8 mice as compared to non-transgenic controls. SOM expressing GABAergic neurons were decreased in CA1-CA2 (specifically in the stratum oriens) and in the stratum radiatum of CA3, whereas PV neurons were significantly altered in stratum oriens sub-region of CA3. Taken together, these data provide new evidence for the relevance of hippocampal GABAergic neuronal network disruption as a mechanism underlying AD sequelae such as aberrant neuronal excitability, and further point to complex hippocampal regional and sub-regional variation in susceptibility to AD-related neuronal loss.
منابع مشابه
Phosphoproteome analysis of an early onset mouse model (TgCRND8) of Alzheimer's disease reveals temporal changes in neuronal and glia signaling pathways.
Sustained exposure to soluble amyloid β (Aβ42 ) oligomers is predicted to impair synaptic function in the hippocampal-entorhinal circuit, signaling synaptic loss and precipitating cognitive impairment in Alzheimer's disease. Regional changes in overall patterns of protein phosphorylation are likely crucial to promote transition from a presymptomatic to a symptomatic state in response to accumul...
متن کاملSodium/myo-Inositol Transporters: Substrate Transport Requirements and Regional Brain Expression in the TgCRND8 Mouse Model of Amyloid Pathology
Inositol stereoisomers, myo- and scyllo-inositol, are known to enter the brain and are significantly elevated following oral administration. Elevations in brain inositol levels occur across a concentration gradient as a result of active transport from the periphery. There are two sodium/myo-inositol transporters (SMIT1, SMIT2) that may be responsible for regulating brain inositol levels. The go...
متن کاملNeurobiology of Disease -Melanocyte Stimulating Hormone Prevents GABAergic Neuronal Loss and Improves Cognitive Function in Alzheimer’s Disease
In Alzheimer’s disease (AD), appropriate excitatory–inhibitory balance required for memory formation is impaired. Our objective was to elucidate deficits in the inhibitory GABAergic system in the TgCRND8 mouse model of AD to establish a link between GABAergic dysfunction and cognitive function. We sought to determine whether the neuroprotective peptide -melanocyte stimulating hormone ( -MSH) at...
متن کاملPhenotypic Alterations in Hippocampal NPY- and PV-Expressing Interneurons in a Presymptomatic Transgenic Mouse Model of Alzheimer’s Disease
Interneurons, key regulators of hippocampal neuronal network excitability and synchronization, are lost in advanced stages of Alzheimer's disease (AD). Given that network changes occur at early (presymptomatic) stages, we explored whether alterations of interneurons also occur before amyloid-beta (Aβ) accumulation. Numbers of neuropeptide Y (NPY) and parvalbumin (PV) immunoreactive (IR) cells w...
متن کاملDifferential contribution of APP metabolites to early cognitive deficits in a TgCRND8 mouse model of Alzheimer’s disease
Alzheimer's disease (AD) is a neurodegenerative pathology commonly characterized by a progressive and irreversible deterioration of cognitive functions, especially memory. Although the etiology of AD remains unknown, a consensus has emerged on the amyloid hypothesis, which posits that increased production of soluble amyloid β (Aβ) peptide induces neuronal network dysfunctions and cognitive defi...
متن کامل